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Abstract 
A Markov Chain Monte Carlo (MCMC) stochastic inversion tool has been developed that 
identifies porosity/permeability models that minimize the misfit between observed  
production data, reservoir flow modeling, geostatistical methods, and a novel stochastic 
inversion technique to identify optimal porosity/permeability models. Reservoir model 
optimization is accomplished through stepwise refinement of its permeability magnitude 
and heterogeneity. In each step of the inversion, reservoir conditions and CO2 migration 
are calculated for the current model realization under prescribed CO2/ H2O injection and 
hydrocarbon/ H2O withdrawal. Comparison of observed seismic reflection responses with 
those calculated for the resultant reservoir conditions determine the associated likelihood 
and whether the proposed reservoir model is acceptable. This process is repeated until the 
process converges. The algorithm is demonstrated with a synthetic data example showing 
that primary features of the known porosity/ permeability distribution can be recovered. 
The inversion algorithm is then applied to observed seismic data example from the IEA 
GHG Weyburn-Midale  CO2 Monitoring and Storage Project with limited success. 
Shortcomings in applying the methodology to real data is assessed and recommendations 
for improvements are provided. 

Introduction 
*
Time-lapse 3D seismic monitoring often provides the basis for tracking the subsurface 
migration of CO2 in geological storage projects (e.g., Chadwick et al., 2010; Eiken et al., 
2011; Ivandic et al., 2012). A common goal in such projects is to use the monitoring data 
to verify the CO2 distributions that are predicted by simulations produced for geological 
models of the reservoir. Typically, the CO2 distributions that are imaged through 
monitoring are inconsistent with the model-based simulations to varying degrees. In such 
cases it is desirable to modify the geological model so that the predictions are consistent 
with the monitoring data. In effect, this is a more general form of history matching 
whereby reservoir parameters (typically permeability) are iteratively modified until the 
simulation results match reservoir engineering data. The addition of seismic monitoring 
data provides an additional constraint on the permeability distribution of the model, and 
in principle should improve the predictive accuracy of the model.  



 
The process of seismic-constrained history matching is time consuming and subject to  
uncertainties. Ideally, a procedure is desired which automates this process and provides 
an assessment of the inherent non-uniqueness and uncertainties. Bayesian stochastic 
inversion methods are ideally suited to this purpose. Such an algorithm has been 
developed in this study to optimize agreement between predicted and observed storage 
performance, and specifically to identify optimal porosity/permeability distributions in 
the reservoir. Our implementation uses the Markov Chain Monte Carlo (MCMC) 
methodology (Mosegaard and Tarantola, 1995).  3D seismic data are utilized in 
conjunction with CO2/H2O injection and HC/H2O production data to refine the spatial 
distribution of reservoir permeability, as the seismic measurements are sensitive to the 
CO2 distribution that is controlled by the reservoir permeability. Existing reservoir 
models, geophysical logs and knowledge of the depositional environment are also used to 
constrain random reservoir model realizations. 
 
In this paper we describe the inversion algorithm that has been developed, demonstrate its 
application on a synthetic data set, and then show initial results of applying the tool to 
actual seismic monitoring data from the Weyburn-Midale field. The limited success in 
applying the methodology to real data is assessed and recommendations for the way 
forward are provided. 
*
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Bayesian stochastic inversion has been utilized previously in a wide variety of seismic 
applications.  In respect to reservoir characterization and monitoring, it has been used to 
invert seismic reflection data with well information to obtain impedance models of the 
subsurface, and to estimate other reservoir variables such as facies and pore fluid 
saturations. For example, Buland and Omre (2003), proposed a stochastic inversion of 
seismic amplitude vs. offset (AVO) to estimate P-wave velocity, S-wave velocity, and 
density. Gunning and Glinsky (2003) use a Bayesian inversion technique in conjunction 
with   a probabilistic rock physics model to estimate a rock sorting parameter that can be 
a useful predictor of permeability.  Eidsvik et al. (2004) integrate deterministic rock 
physics relations and spatial statistical representations of reservoir properties with well 
observations, seismic reflection times, and AVO to predict the distributions of reservoir 
facies and fluid saturations. Glinsky et al. (2005) suggest a Bayesian strategy to integrate 
seismic and geological data at various scales of resolution.  
*
,-&./0(-%.)12$#"(%&2)344"&0./)
)
The inverse problem under consideration can generally be described as follows. Let 

! 

D 
denote the data space, and 

! 

x denotes the model, then suppose that there exists a mapping 

! 

G  such that: 
  

( )xGd =   (1) 

 



The goal is to find models 

! 

x0 that correspond to the set of observations, 

! 

d0 . The range of 
possible solution models (X), is limited by a priori knowledge.  
The MCMC approach that has been implemented is a derivative of the Metropolis 
algorithm (Metropolis et. al., 1953) as described by Mosegaard and Tarantola (1995). It 
uses a Markov chain process to control the sampling of the model space X. Within this 
framework, the solution to an inverse problem is an estimate of the posterior probability 
distribution defined over model space 

! 

X . Then, for any potential solution 

! 

x0 " X , the 
method will provide an estimate of the probability and confidence that state 

! 

x0 (i.e., 
proposed model) is the true state of the underlying system.  
In this study, the models that are sought are reservoir permeability and porosity 
distributions. A priori knowledge consists of the locations of lithologic boundaries, 
lithology types, and correlations between porosity, lithology and permeability. The a 
priori knowledge of porosity and permeability relationships obtained from geophysical 
logs and core measurements provide the basis for specifying rules that govern the 
generation of reservoir model realizations. An MCMC simulation algorithm generates 
samples according to the unknown posterior distribution. The adopted Bayesian approach 
uses an importance-sampling algorithm based on a randomized decision rule to accept or 
reject the proposed models according to their consistency with the observed data. 

The MCMC approach is similar to classical deterministic inversion with the random 
model generator replacing the deterministic updating scheme. In both cases, an initial 
model is chosen and responses are calculated with a forward solver. The calculated 
responses are compared to observed data. Finally, an updated model is chosen and the 
process repeats. The two approaches differ in how the updated model is chosen and the 
final result of the process. Specifically, MCMC produces a probability distribution 
defined over the model space X, whereas deterministic methods produce a single or a 
collection of models from X that best explain the data. 

In the inversion procedure, a decision process is applied that either accepts or rejects 
model realizations according to their consistency with the measurements 

! 

d. Specifically, 
for each reservoir model realization, the forward simulator is used to calculate a 
measurable quantity which corresponds to the observed data (in our case, seismic 
waveforms). These synthetic data are then compared to corresponding measurements to 
determine the likelihood 

! 

L (x )  that the given state 

! 

x " X  produced the observed data. An 
accept/reject decision based upon this likelihood is used to modify the prior sampling 
process. The result is a new Markov chain, R, which samples the posterior distribution, 

! 

" (x ) . These samples provide the basis for estimating the posterior distribution and any 
subsequent inference concerning the true unknown state of the system. 
 
Seismic-constrained porosity/permeability inversion 
 
Figure 1 depicts the process that has been implemented to identify reservoir models that 
produce CO2 plumes that provide optimal agreement with the seismic data. Details of 
each step of the inversion procedure are provided in Appendix A. Uncertainties 
associated with both limited sensitivity and measurement error are explicitly accounted 
for by using the Metropolis-Hastings technique (Mosegard and Tarantola, 1995).  As 



depicted in Figure 1, the process starts by generating an initial reservoir model realization. 
Then, the multi-phase/multi-component reactive transport simulator NUFT (NUFT, Nitao, 
1998 a,b ) is used to simulate CO2/H2O injection, HC/H2O withdrawal, and CO2 
migration to a time corresponding to when the time-lapse seismic monitoring data were 
acquired. The corresponding seismic response is calculated for the resultant reservoir 
conditions using Gassmann-based fluid substitution (Gassmann, 1951) which can then be 
directly compared to the observed seismic response. The likelihood for each model is 
computed and the Metropolis-Hastings algorithm is used to decide whether the proposed 
model produces relatively close agreement between predicted and observed 4D seismic 
reflection data. Then, a new reservoir model is proposed and the process is repeated until 
the process converges. This approach will produce a posterior distribution that ranks all 
the posed reservoir models on the basis of likelihood, which is an explicit measure of 
consistency between predicted and observed seismic response.   
 
The Weyburn Reservoir Model 
 
The reservoir model used as a basis for the inversion was extracted from an existing 
geological model for the field that had been constructed by the Weyburn field operator 
(Cenovus). This model had been calibrated against injection and production data 
collected over a period of approximatey 50 years. The geological framework used in the 
inversion is shown in Figure 2. It comprises 7 lithologic layers comprising the lower 
Watrous Member (low permeability sandstone-mudstone) and a sequence of alternating 
carbonate and evaporite beds: the Ratcliffe beds, Midale evaporite, Midale Marly 
dolostone, Midale Vuggy limestone, and Frobisher Marly and Vuggy beds. The Midale 
Marly and Vuggy beds form the primary reservoir unit, but are in direct hydraulic contact 
with the underlying permeable Frobisher beds.  Detailed descriptions of these geological 
units can be found in Whittaker et al. (2004). The boundaries of the individual lithologic 
layers in the model are defined by many well penetrations across the field and thus are 
considered to be very accurate. During the inversion, these layer boundaries remained 
fixed.   
 
Statistical distributions of permeability/porosity for the reservoir units (Midale Marly and 
Vuggy) and the immediately underlying (Frobisher Marly and Vuggy) are obtained from 
core measurements, well log information and from the calibrated flow model. Midale 
formation porosity/permeability data extracted from Cenovus’ model are shown in Figure 
3. The histogram suggests a bimodal porosity distribution corresponding to the Vuggy 
limestone (mode near 0.1) and the Marly dolostone (mode centered near 0.24). A similar 
bimodal distribution (not shown) is also characteristic of the underlying Frobisher 
formation with modes centered near 0.07 and 0.24 corresponding to the Marly and Vuggy 
units, respectively. Porosity and permeability (Figure 3b) are correlated in both the 
Midale Marly and Vuggy units. The spread of permeability values (10-2 to 103 mD) for 
the Vuggy limestone is generally broader than for the Marly dolostone (10-1 to 101.5 mD). 
These porosity frequencies and porosity permeability correlations are used to govern 
model realizations for the inversion procedure. Permeabilities in the overlying units 
(Midale evaporite, Ratcliffe and lower Watrous) are set to zero, thus restricting pore fluid 
and pore pressure variations to the reservoir units during inversion. 



 
Elastic properties for the various geological layers are required to calculate the associated 
seismic response for various reservoir realizations (see Appendix A for details). Static 
values of bulk density, bulk modulus and shear modulus were assigned to the Midale 
evaporite, Ratcliffe and lower Watrous layers. For the underlying layers, static values 
were assigned for the constituent matrix mineral densities and elastic moduli (see Table 
1), and resultant seismic properties were calculated based on Gassmann relations for the 
variable pore fluid saturations and pressures that resulted from the flow simulations. 
Pressure effects were explicitly included for both the pore fluids and the dry rock matrix 
properties. An example of the dry rock matrix pressure dependence is shown in Figure 4.  
 
Inversion results using synthetic data 
 
To test the inversion algorithm, a synthetic data set was generated to represent a field data 
set for input to the inversion. Toward this end, random realizations of reservoir 
porosity/permeability were generated (referred to herein as “reservoir models”) utilizing 
the geostatistical trends described earlier. One of these reservoir models was adopted as 
the “true” or actual model. Flow simulations were conducted which incorporated the CO2 
injection and fluid production rates that were actually used in the field. The simulation 
assumed that water was injected for 2 years, and that CO2 injection started after 0.7 years 
of water injection. The permeability distribution for several levels within the “true” 
model is shown in Figure 5 along with the corresponding CO2 distributions as determined 
in the flow simulations after 1.3 years of CO2 injection.  
 
The flow simulations determined various reservoir parameters including fluid saturations 
and densities and pore pressures. Seismic impedances were determined throughout the 
model using the calculated reservoir parameters and Gassmann’s equation. Seismic 
reflectivity and zero-offset, 1D seismograms were subsequently calculated for the 
impedance model. These seismograms were adopted as the “observed data” to be used as 
input to the stochastic inversion. The MCMC inversion algorithm was then run to find 
those permeability models that best fit the seismic data. The permeabilities recovered by 
the inversion were then compared to the “true” model to assess their similarity. 
 
Figure 6 shows details of the reservoir region used for the test. The region consisted of 
pattern 16 and included a CO2 injector, oil producers and water injectors. The size of the 
region is 1.17 km by 1.17 kilometers. The reservoir models all use the same underlying 
lithologic designations and layer boundaries as provided in the “Cenovus model”. The 
stochastic realizations allow porosity and permeability to vary spatially between each 
layer while honoring the porosity/permeability trends embedded in the Cenovus model 
(Figure 3). 
 
Figures 7a and b show the permeability model as a function of MCMC iteration. The 
horizontal slice shown is coplanar with the CO2 injector.  The top left images shows the 
“true” model. Note that after 70 iterations there are substantial similarities between the 
recovered image and the true model. Subsequent iterations (Figure 7b) show features that 
are qualitatively similar to the true model; however, the inversion values are somewhat 



higher than those in the true model. This is not surprising because the MCMC approach 
searches the space of possible solutions. It moves into a region were the models are very 
consistent with the observations and then, can move away in order to search for other 
possible regions that may be consistent with the observations.   This means that the best 
models may not necessarily be at the end of a Markov chain (i.e., last iteration number) 
and thus, may be found at earlier iterations. 
 
The models that best reproduce the “observed” seismograms can be identified by 
examining the likelihood function values. The likelihood function (equation 10 of 
Appendix A) provides a metric that indicates how similar are the predicted and observed 
seismic data for a given reservoir model realization. The top three models, identified in 
this manner from a Markov chain that was 1100 iterations long, are shown in Figure 8. 
The left column of images shows three horizontal slices through the true permeability 
model, and the location of the CO2 injector and oil producers. The remaining 3 columns 
of images show slices through reservoir models that exhibit the maximum likelihoods.  
 
These maximum likelihood models are characterized by several permeability features that 
are observed in the true model. The slices coplanar with the CO2 injector and oil 
producers (middle row of images in Figure 8) show regions of relatively high and 
relatively low permeabilities. Note the relatively high permeability zone located on the 
lower left quadrant of the true model is matched reasonably well by high permeability 
zones in the inversion models. The slices at 6m above the CO2 injector (top row of 
images, Fig. 8) are similar to the “true” model and all show regions with relatively high 
permeability. Similar comments apply to the slices located 4 m below the injector well 
(bottom row of images).  
 
It is well known that inversions of geophysical data are typically non-unique and the 
solution(s) are uncertain. One of the strengths of this stochastic inversion method is that it 
provides the information needed to characterize solution uncertainty. The differences 
between the inversion models in Figure 8 are indicative of the uncertainty associated with 
the inversion results. Image features that are similar in most inversion models indicate a 
higher level of confidence that the features represent the true model.  Conversely, 
features that vary from one inversion to the next are associated with a higher level of 
uncertainty and therefore, we are less confident that they are representative of the true 
model.  
 
An interesting aspect of these results is that the inverted models appear to recover 
reasonable permeabilities in regions not invaded by the CO2 plume. For example, the 
high permeability zone in Figure 8 (middle row of images) located in the lower left 
quadrant of each image is not intersected by the CO2 plume and yet the inversion 
recovers permeabilities that are reasonably close to the true model. In the absence of CO2 
in this zone, this result must be associated with some combination of pressure sensitivity 
and/or the effect of interchanging water and hydrocarbons. The permeability distribution 
affects the pressure field in the reservoir which in turn affects both the rock and fluid bulk 
moduli as incorporated in the inversion scheme. This is illustrated in Figure 9 where the 
differences in the calculated Vp field are shown for simulations with and without CO2 



injection and fluid production. In the first case, water was injected for 2 years with no 
CO2 injection or fluid extraction allowed. This is compared to the initial test inversion 
case (see above) where water injection occurred for 2 years with CO2 injection started 
after 0.7 years of water injection. As can be seen, significant changes in the Vp are 
observed between these two cases. 

Inversions using real field data 
 
 The stochastic inversion was applied to the actual P-wave seismic data from the 
Weyburn field, for the same field pattern as used for the synthetic test described above. 
An example of the observed seismic data is shown in Figure 10. The flow simulation 
included water injection for 2 years with CO2 injection starting after 0.7 years of water 
injection. For comparison with the 2001 seismic data, which were acquired 16 months 
after the start of CO2 injection in the pattern, the flow simulation results corresponding to 
1.3 years of CO2 injection were used. Figure 11 shows a high likelihood model (i.e., one 
that minimizes the seismic misfit) from iteration 5751 of the MCMC inversion. The 
standard deviations in the Marly and Vuggy layers range from ~4 to 18 md and 6 to 24 
md, respectively. The mean permeabilities and associated standard deviations for an 
ensemble of high likelihood models is shown in Figure 12. 
 
As can be seen in Figure 13, the inversion procedure led to a reduction in the misfit 
between the predicted and observed seismic waveforms, but the misfit reductions were 
substantially less than expected. Visual inspection of the predicted and observed seismic 
waveforms showed relatively large differences. It would appear that the poor match 
between observed and synthetic waveforms fit probably affected the accuracy of the 
inverted porosity/permeability fields. A comparison of histograms of permeability and 
porosity for the optimal inversion models and the a priori porosity/permeability 
histograms showed great similarity. This suggests that the seismic data had limited 
influence in determining the posterior permeability distributions. Obviously, this is 
counter to the objective of applying the inversion procedure. The underlying causes of 
this behavior and potential means of improving the performance of the inversion scheme 
are discussed further below. 
 
Computational Expense 
 
The stochastic inversion approach implemented in this study is computationally intensive. 
The vast majority of computational effort is associated with execution of the flow 
simulator in each iteration, combined with the large number of iterations required for the 
Markov chains to reach convergence, typically in the range 104 – 105 iterations.  The 
initial implementation of the inversion algorithm required between 16 and 48 days of 
wall clock time to reach convergence for the single reservoir pattern used in this study, 
when run on a 112-processor cluster. For inversion of data from the larger area monitored 
in the Weyburn field (19 patterns), the required time would increase substantially. Clearly, 
these run times needed to be reduced substantially to make the technique useful.   
 
Changes to the initial inversion algorithm eventually improved the computational 
efficiency so that execution times were reduced by an order of magnitude and the time 



required to reach convergence was only a few days. Modifications included various 
multi-threading approaches. Figure 14 schematically shows the nested, parallel-thread 
approaches that were implemented. Each Markov chain runs on a separate thread (left 
side of Figure 14), with each Markov chain thread sub-divided by creating multiple 
reservoir realizations. Each realization is created by perturbing the last model accepted by 
the MCMC algorithm and is run on a separate thread (middle diagram in Figure 14). All 
these threads are further subdivided when the flow simulator is used because it runs in 
parallel mode. The combined effect of these modifications produced an improvement in 
performance by a factor of ~8.  
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The results presented her suggest that it is possible to invert for permeability models that 
are consistent with seismic reflection monitoring data in a reservoir subjected to injection 
of super-critical CO2.  In principle, the seismic monitoring data should provide 
constraints on the permeability models as the seismic impedances are strongly affected by 
the presence of CO2 whose distribution is controlled by the permeability field of the 
reservoir. In the synthetic test case, permeability models that were reasonably close to the 
“true” model were recovered. This is not surprising given that the synthetic seismic 
generated for the “true” model and adopted as the “observed” data were adherent to all of 
the assumptions underlying the inversion procedure. However, in applying the inversion 
procedure to actual seismic monitoring data from the Weyburn field, the inversion results 
were generally unsatisfactory. Although the misfit between the observed and calculated 
seismic data improved during the course of the inversion, the misfit reduction was limited 
and the seismic data had less affect on the resultant permeability distributions than 
expected.  
 
The root cause of the poor performance of the inversion as applied to the real data is 
primarily due to the large initial misfit between the observed and calculated seismic data. 
This large misfit results from the use of constant seismic parameters (bulk and shear 
modulus) for the individual geological layers which don’t account for observed lateral 
heterogeneity. As a result, the calculated seismic waveforms differed substantially from 
the average observed waveforms prior to any CO2 injection. The associated differences 
in the waveforms are large when compared to the changes induced by CO2 injection. 
Thus, the inversion process sought to minimize the seismic misfit using only changes in 
the pore fluid saturations and reservoir pressure changes, when in fact the bulk of the 
misfit was due to the inaccuracies in the original rock matrix properties. The latter 
generally have a larger influence on the seismic response than changes in the pore fluids. 
It is clear that the starting reservoir rock matrix seismic properties need to be more 
accurate for the inversion to succeed.  
 
To mitigate the effect that inaccuracies in the starting reservoir model properties have on 
the inversion, a number of approaches were applied or considered. First, the rock matrix 
moduli for the individual layers were manually adjusted to achieve a better fit between 
the observed and calculated baseline data. It was clear that the elastic moduli determined 
from core samples were not entirely appropriate for application at the scale of the seismic 



data. In particular, a prominent feature of the synthetic waveforms was a peak associated 
with the Midale Vuggy layer that was more generally much more prominent than in the 
observed data. The bulk and shear moduli for this layer were reduced to provide a better 
initial match to the observed data. A similar observation regarding the reservoir moduli 
was made by Verdon et al. (201x) in geomechanical modeling.  This modification 
improved matters, but did not entirely solve the problem.  
 
In subsequent work, there are several other approaches that may be considered to address 
the effects of inaccurate elastic properties of the starting model. These include: 1) 
stochastic inversion for the pre-injection rock matrix seismic parameters to match the 
baseline data prior to the start of inversion for pore fluid effects; 2) Comparison of the 
difference data (i.e., monitor minus baseline) in the stochastic inversion to reduce the 
effects of inaccuracies in the baseline model; 3) Seismic impedances determined directly 
from the baseline data could be used to improve the baseline model. 
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An MCMC stochastic inversion algorithm has been developed that uses seismic 
reflection data to constrain reservoir permeability and porosity distributions during the 
injection of CO2. The algorithm has been successfully demonstrated on a synthetic test 
case, where all of the assumptions underlying the inversion approach are met. The 
MCMC stochastic inversion identified models of reservoir porosity and permeability that 
best fit the “observed” seismic data and have features that are characteristic of the true 
porosity-permeability model. It is also possible to estimate permeability in reservoir 
regions that do not contain CO2. This results from the pressure-dependance of the bulk 
and shear moduli. 
 
Application of the inversion algorithm to real data from the Weyburn field was only 
partially successful. Inversions of the real seismic data resulted in reduction of the misfit 
between the predicted and observed waveforms, but the misfit improvements were less 
than expected. The underlying cause of this limited success was the inaccuracy of the 
elastic moduli used in the underlying geological model. Misfits between the observed and 
calculated seismic data associated with this issue, are generally larger than those 
produced by the injection of CO2. Thus, the inversion inappropriately attempts to 
eliminate these large waveform misfits through pore fluid and pressure changes. For the 
inversion to succeed, the strong influence of the baseline model must be mitigated either 
by improving the initial elastic model parameter distribution (e.g., through stochastic or 
conventional impedance inversion of the baseline data), or by directly utilizing the 
difference data (i.e., monitor minus baseline) rather than comparing the monitor data 
directly in the inversion process.  
 
Computational expense remains a challenge to the general application of this algorithm. 
As currently implemented, the inversions required up to 9 days of computer time when 
running on a cluster of 112 processor cores. This was for a relatively small model. 
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Figure 1. Flow diagram for the first inversion step using seismic data. Note that the 
process will use two or more seismic data sets simultaneously.



 

Figure 2. Geological model used as the basis for inversion. 

 



Figure 3. Left panel, histogram of porosity recovered from Cenovus’ model. Right panel, 
cross-plot of porosity versus log10(permeability – milli-darcies). 



  

Figure 4. Pressure dependence of bulk and shear modulus for the Midale Marly unit 
utilized in the inversion. Data points are from Brown (2002). 



 

Figure 5. The top row of images shows the CO2 distribution calculated assuming the 
permeability distribution in the bottom row of images. The image planes are horizontal 
and located at the elevation of the CO2 injector, 6m above the injector and 4 m below the 
injector. The CO2 saturation color bar is at the top right corner of the image. The 
permeabilities are in millidarcies (bottom right color bar). 



 
Figure 6. Shows the Phase 1A pattern considered by our study. The blue circles represent 
vertical water injection wells. The black circles and lines represent vertical and horizontal 
production wells, respectively. The red lines represent CO2 injection wells. 
 



 
Figure 7a. The top left image shows the true permeability distribution and the locations of 
the CO2 injector, oil producers and water injectors. The CO2 injector is coplanar with the 
horizontal image plane shown. The remaining images show the recovered permeabilities 
as a function of MCMC iteration. 

Figure 7b. The top left image shows the true permeability distribution and the locations 
of the CO2 injector, oil producers and water injectors. The CO2 injector is coplanar with 
the image plane shown. The remaining images show the recovered permeabilities as a 
function of MCMC iteration. 



 
Figure 8. The left column of images shows horizontal slices through the true permeability 
model. The next three columns show recovered permeability distributions that best fit the 
synthetic seismic data. 



 
Figure 9. The left column of images shows the “true” permeability model. The second 
and third image columns show the calculated pressure and CO2 saturation that develop 
after 1.3 years of CO2 injection. The fourth image column shows changes in P velocity 
(V1 – V2) predicted, where V1 = velocity at ambient pressure and no CO2, and V2 = 
velocity at injection pressures and CO2 saturations. The velocity changes within the 
white ellipse region are likely caused by pressure fluctuations created by the 
injection/extraction process. 
 



Figure 10. Example of the observed seismic data for the reservoir zone. 



 

 
Figure 11. Model from iteration 5751. The horizontal slices show the lithologies, 
permeability, porosity, permeability standard deviation, along with the corresponding 
CO2 saturations and pore pressures. The horizontal slices are located 4 m above the 
location of the CO2 injector. Note that the slice is located mostly within the Marly unit. 



 
Figure 12. Lithology, mean and standard deviation for all the permeability models with 
iteration number greater than 5700. The permeabilities are shown in milli-Darcy (mD), 
on a logarithmic scale. The apparent gradations in lithology (1st column) are an artifact 
of the smoothness filter used by the visualization software. 



  

 

 

Figure 13 The plots show likelihood value as a function of iteration for two permeability 
inversion runs that used different step sizes.  The step size associated with the top plot 
was about ten times larger (on average) than the step size for the bottom plot. The top 
plot indicates that a solution with better likelihood (closer to 0) has been found using the 
larger step size. Likelihood is a measure of the similarity between the predicted and 
observed seismic waveforms. Note that a stable value is achieved after about 5700 
iterations (top plot) and 5000 iterations (bottom plot).



 

Figure 14. Shows schematic implementation of the nested, parallel-thread approaches 
sed to optimize run-time performance. u



Appendix A: The inversion algorithm 
 
Details are presented here regarding the inversion algorithm described in the main text 
and schematically illustrated in Figure 1.  

1. Propose reservoir model realizations 

Reservoir model realizations are populated with porosity/permeability data based on prior 
knowledge of the relationship between lithology and porosity/permeability for the 
specific depositional setting. Reservoir model proposals are generated by randomly 
perturbing the existing Cenovus reservoir model.  Random perturbations of the 
permeabilities and porosities are generated as governed by the a priori distributions 
shown in Figure 3. This is done as follows: 
 
1) Read in Cenovus’s geologic model  
2) Initialize layer values. For each lithologic layer: 

2a) Read starting model containing lithologies, and initial porosities, and 
permeabilities. 

     2b) Calculate average value of porosity and permeability 
     2c) Identify grid nodes associated with each layer 
     2d) Assign average value of porosity and permeability to each node 
 3) Generate realization of porosity and permeability fields. For each lithologic layer: 

3a) Choose at random ~ 5 - 10% of nodes to change porosity/permeability.  
      For each node to be changed: 

                        3a.1) Randomly choose a value of porosity probability (chosenProb) 
                                (use the probability ranges implied by the Fig. 3 histogram). 
                        3a.2) List possible porosity values that have probability > chosenProb 
                        3a.3) Choose random porosity value from the 3a.2 list 
                        3a.4) List possible permeability values for the porosity chosen in 3a.3 
                                (use the porosity/permeability correlations in Fig. 3, bottom row) 
                        3a.5) Choose a random permeability from the list of possible values, 
                                (assuming a lognormal distribution). 
                        3a.6) Assign new porosity and permeability values to grid node 
 
These realizations are used by the flow simulator. 

2. Flow simulation 

The Nonisothermal Unsaturated-Saturated Flow and Transport code (NUFT) is used for 
reservoir-scale multiphase flow and reactive transport simulations.  NUFT is used to 
simulate flow within the reservoir caused by injection/extraction of CO2, H2O and oil. 
The NUFT code is a highly flexible software package for modeling multiphase, multi-
component heat and mass flow and reactive transport in unsaturated and saturated porous 
media (Nitao, 1998).  An integrated finite-difference spatial discretization method along 
with implicit time-integration scheme is used to solve mass and energy balance equations 
in flow and reactive transport models. At each time step the resulting nonlinear equations 
are solved by the Newton-Raphson method. The NUFT code has been used for 



applications such as geologic disposal of nuclear waste, CO2 sequestration and storage, 
groundwater remediation, and subsurface hydrocarbon production (e.g., Buscheck et al., 
2003; Johnson et al., 2004, 2005).  
 
For multiphase flow modeling of the reservoir, the top and bottom boundaries are kept 
impermeable and hydrostatic pressure conditions are assigned along the lateral boundary. 
Vertical and horizontal production wells, and horizontal injection wells are included in 
the model. CO2 is injected under supercritical conditions. Due to the presence of water, 
oil and supercritical CO2, three-phase flow conditions are considered and equilibrium 
conditions are assumed for component partitioning among three phases.  The equation-of-
state and viscosity of CO2 under supercritical conditions are obtained based on the 
empirical equations developed by Span and Wagner (1996) and Fenghour and Wakeman 
(1998), respectively. The water and oil properties (pressure, volume, temperature) are 
computed using the empirical formulas that can be found in most of textbooks on 
reservoir modeling (e.g. Chen et al., 2006). The injection-induced reservoir pressure 
perturbations along with CO2 plume distributions are predicted by the reservoir flow 
model.  

3. Calculate seismic likelihood 

The next step is to calculate zero-offset seismograms using the information produced by 
the CO2 flow simulator (NUFT). The resultant seismograms can then be compared to the 
observed seismic data to determine the a posterior likelihood. The components of this 
process are: 

1) Calculate elastic properties using Gassmann’s relations for current reservoir 
conditions 
2) Calculate corresponding seismic reflectivity 
3) Calculate zero-offset (1D) seismograms 
4) Compare the predicted and observed seismograms to compute the likelihood that 
the predicted waveforms come from the “true” model. 

3.1 Calculate elastic parameters 
As the fluid saturations, temperature and pressure conditions change during CO2 injection, 
the reservoir’s elastic parameters (bulk and shear moduli) and density change. 
Consequently, seismic velocities and impedances change resulting in seismic reflectivity 
changes within the reservoir. Fluid substitution techniques are used to predict these 
changes for a range of fluid scenarios using Gassmann’s equation (Gassmann, 1951) as 
described in Smith et al. (2003). In this manner, the elastic moduli and associated seismic 
velocities of a fluid-saturated rock are obtained from the rock porosity, elastic moduli of 
the porous dry rock frame and the constituent mineral matrix, and the bulk moduli and 
densities of the pore fluids.  
 
The fluid substitution modeling invoked here follows the procedure described in Smith et 
al. (2003), but introduces modifications where some derived quantities are replaced with 
quantities measured on core samples from the Weyburn field. The algorithm consists of 
the following: 



1. Obtain mineral matrix bulk modulus (Ko) based on core measurements (see Table 
1). 

2. Calculate fluid bulk modulus (Kfl) and density based on saturations, bulk moduli 
and densities of constituent fluids for appropriate pressure, temperature conditions. 
Obtain individual bulk moduli from equations of state for each fluid. Use equation 
3 (below). 

3. Obtain dry porous rock framework bulk modulus (K*) for appropriate pressure, 
temperature conditions (e.g., Figure 4). 

4. Calculate moduli for saturated rock using the Gassmann equation. Use equation 4 
(below) and appropriate porosity value ( ). 

5. Calculate Vp, Vs for saturated rock using the moduli from step 4. Use equations 5-7 
(below). 

 
The equation used to calculate the composite fluid modulus is: 
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  (3) 

 
The brine modulus (Kw) is calculated using the approach of Batzle and Wang (1992) 
equations 27 -  29. They use a combination of thermodynamic relationships, empirical 
trends and data to develop simplified relationships that produce estimates of realistic fluid 
properties in rock models. 
 
The oil modulus (Koil) and CO2 modulus (Kco2) is computed using the compressibilities 
computed by the NUFT simulator.  
 
Gassmann’s equation used to calculate saturated rock bulk moduli (Kinj) is: 
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Once (Kinj) is calculated, we are ready to calculate the P and S seismic velocities (Vp ,Vs): 
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where 
b
 is the bulk density under initial (pre-injection) conditions and,  

 
Ginit bVs,core

2
     (6) 

 
where V  is the shear velocity measured on dry rock core (e.g., see Figure 4). s,core

 

3.2 Calculate synthetic waveforms 

1D seismograms are calculated using the approach described by Margrave (2003). Use of 
a 1-D model is considered appropriate because the seismic data we use has been migrated 
and the layering is approximately horizontal. Margrave’s approach constructs the 
reflection response of a 1D medium to a unit impulse. The impulse response only 
considers primary reflections and ignores multiple reflections. This impulse response is 
then convolved with an appropriate wavelet that simulates the effects of the seismic 
source. The resulting waveform is the synthetic 1D seismogram that will be compared 
with the observed 1D seismograms.  
 
Reflection coefficients (R; or reflectivity) determine the amount of reflected signal 
generated at each layer interface and, collectively form the impulse response along a 
vertical line of nodes. In equation 7, R is the reflection coefficient between two layers 
having seismic impedances 

I 1

 (top layer) and I2
 (bottom layer). Seismic impedance is a 

function of seismic velocity and bulk density as shown in equation 8. 
 
 R I I( 2 1) /(I I1)    (7) 2
 
 I V b

     (8) 
 
A wavelet derived from the observed seismic data is then convolved with the reflectivity 
series to produce synthetic 1D seismograms.  

3.3 Calculate likelihood function 

We now describe Metropolis-Hastings algorithm, the importance sampling algorithm we 
use to decide whether the proposed model should be accepted or rejected. The likelihood 
L(x )  is a measure of the degree of fit between the data predicted (i.e., the calculated 
seismograms described previously) assuming model x  and the observed data (fully 
processed, filed data derived seismograms), and k is a normalizing constant. In our 
approach, we use a likelihood function of the form: 
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where N is the number of data points, d ( )x pred ,i  is the predicted data for a given model x , 
 is the vector of observed measurements, d0,i i

x

 is the estimated data uncertainty, 
and . We note that most deterministic inversions also use the term in parentheses as a 
measure of goodness of fit.  

n 1

 

The decision to accept or reject a proposed model is made on the basis of likelihood 
comparisons. Suppose that the current model of the Markov chain is T  and that a move 
to an adjacent model x T 1  is proposed. If these transitions were always accepted, then 
our MCMC method would be sampling from the prior distribution (x), i.e., the 
observed data d  would not influence the search.  0

 

L(x T 1 ) L(x T ) : Paccept

L(x

1
T 1 ) L(x T ) : Paccept

  (11) L(x T 1 ) /L(x T )

 

Instead, suppose that the decision to accept the proposed transition is made as follows 
(see eq. 11). When the likelihood of the proposed model L(x T 1 ) is equal to or larger 
than that of the current model TL(x )
L(x

, the proposed transition is always accepted.  If 
T 1 ) L(x T

L(x
) but the two values are close to each other, the probability of 

acceptance is still around 1.0. For example, suppose that 
T ) L(x T

 = 10 and 
1 )

x

 = 9.  
In this case, the probability of acceptance (Paccept) will be 9/10 or 0.9.  We then generate a 
uniformly random number RN in the range 0 to 1.0. When Paccept >  RN, the transition to 
model T 1 is accepted. Note that there is a high probability of accepting x T 1  because 
the odds are very high that Paccept >  RN. Next, let’s suppose that the model x T 1

L(x
 is much 

less consistent with the data such that 
T 1 )

L(x

 = 0.9. In this case, Paccept is 0.09, the odds 
that Paccept >  RN are much smaller and  thus, the odds of accepting the transition are a lot 
smaller. However, even when T 1 ) L(x T ) , Paccept is not zero. Thus, this 
randomized rule allows a transition to a less likely model such that the process will move 
out of a local extremum. Theoretically, it will never get trapped in a region of locally 
high likelihood as long as the likelihood of the proposed model is greater than 0.0. Then, 
the randomized acceptance rule guarantees that the probability of accepting this transition 
will always be greater than 0.0. 

 
Metropolis et al. (1953) proved that the samples generated through this process has a 
limiting distribution that is proportional to the desired posterior distribution x d  -- the 
probability of model x  being the true model of nature given that d  has been measured. 
As a result of the randomized rule, the search tends to hover in regions of space  
containing models that better fit the prior information and seismic measurements. 
Because of this, space X  is traversed more efficiently than with traditional Monte Carlo 
techniques. 

X



 
T 1If the decision is to accept model x , it becomes a part of the posterior distribution, 

and the next proposal ( x T 2 x) will be generated as a random perturbation about T 1 . 
Alternatively, if the decision is made to reject x T 1 , a copy of Tx  is added to posterior 
distribution, and the next proposal ( x T 2 ) will be generated as a random perturbation 
about Tx . The net result of this approach is that solutions are sampled at a rate 
proportional to their consistency with available data.  
 
This is a key strength of our MCMC approach. Models that are most consistent with 
available data observations are sampled most often, while models that are incompatible 
with either prior information and/or observations are rarely sampled. As a result, the 
frequency of models in the posterior distribution x d  can be used to determine the 
probability that a given model is the best explanation for the available data.  It can also be 
used to objectively rank alternative models that are consistent with the data. 
 

3.4 Compare predicted and observed seismic waveforms 
 
Comparison of predicted and observed waveforms is required in order to calculate the 
likelihood function, specifically the numerator term in eq. 10. The algorithm we have 
developed follows (comments shown in italics). 
 
1) Trim the observed waveforms (Wobs) to only include the part that corresponds to the 
reservoir box.  
2) Scale the amplitudes of the predicted waveforms (Wpred) and Wobs. Scale such that the 
maximum value of each is set to 1.0. This is done because the Wpred and Wobs data have 
arbitrary units and thus, need to be amplitude-matched. 
3) Cross-correlate Wpred and Wobs to determine the delay-time.  
4) Time-shift Wpred so that it aligns with Wobs. 
5) Compute the difference in amplitude for each waveform time-step and sum the 
absolute value of the differences. This corresponds to the operation shown on the right 
hand of eq. 10. 



Geological 
Unit 

Bulk 
Modulus 
(GPa) 

Shear 
Modulus
(GPa) 

Density
(kg/m3)

Watrous   ?? ?? ?? 
Ratcliffe 76.3 33.0 2740 
Midale Evaporite 73.7 39.1 2803 
Midale Marly 79.4 37.7 2824 
Midale Vuggy 76.3 33.0 2740 
Frobisher Marly 80.9 39.5 2838 
Frobisher Vuggy 76.3 33.0 2740 
 
Table 1. Mineral matrix bulk properties used for geologic units in calculation of the 
seismic response. Bulk properties were determined using the mineral fractions in Table 
3.6 of Law et al. (2004) and the moduli values in Smith et al. (2003).  
 


